Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8014, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049425

RESUMO

Built structures increasingly dominate the Earth's landscapes; their surging mass is currently overtaking global biomass. We here assess built structures in the conterminous US by quantifying the mass of 14 stock-building materials in eight building types and nine types of mobility infrastructures. Our high-resolution maps reveal that built structures have become 2.6 times heavier than all plant biomass across the country and that most inhabited areas are mass-dominated by buildings or infrastructure. We analyze determinants of the material intensity and show that densely built settlements have substantially lower per-capita material stocks, while highest intensities are found in sparsely populated regions due to ubiquitous infrastructures. Out-migration aggravates already high intensities in rural areas as people leave while built structures remain - highlighting that quantifying the distribution of built-up mass at high resolution is an essential contribution to understanding the biophysical basis of societies, and to inform strategies to design more resource-efficient settlements and a sustainable circular economy.


Assuntos
Materiais de Construção , Plantas , Humanos , Biomassa
2.
Environ Sci Technol ; 57(34): 12674-12688, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578457

RESUMO

Road infrastructure is an integral part of built environment stocks, as it delivers essential social and economic services. While previous work has assessed material stocks, flows, and embodied emissions, spatially refined mapping of materials accumulated in road infrastructure can highlight hitherto underappreciated synergies between improved spatial planning, material stock efficiency, and urban mining. In this study, we mapped the materials stocked in road infrastructure across Belgium, explored the patterns of material stock efficiency and the recyclability of end-of-life road materials, and examined the greenhouse gas (GHG) emissions reductions of improving stock efficiency and recycling. We assembled data scattered across various governmental sources and crowdsourced platforms and developed a comprehensive database to warehouse locational information on road typology, layer geometry and thickness, material characteristics, traffic volume, climatic conditions, and soil conditions. Our results reveal a strong but nonlinear correlation between material stock efficiency and population density, indicating that spatial planning can reduce the required road stocks and associated GHG emissions. Urban mining potentials in road infrastructure hinge on multiple factors, such as the proximity to recycling facilities and the degradation of pavements during use. Our counterfactual analysis shows that urban road planning and reusing recycled asphalt can cut GHG emissions by up to 53 and 70%, respectively. Therefore, material-efficient road planning and improved material recycling can help realize circular economy potentials and mitigate GHG emissions moving forward.


Assuntos
Gases de Efeito Estufa , Bélgica , Reciclagem , Ambiente Construído , Efeito Estufa
3.
Nat Commun ; 14(1): 3898, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400457

RESUMO

Built structures, i.e. the patterns of settlements and transport infrastructures, are known to influence per-capita energy demand and CO2 emissions at the urban level. At the national level, the role of built structures is seldom considered due to poor data availability. Instead, other potential determinants of energy demand and CO2 emissions, primarily GDP, are more frequently assessed. We present a set of national-level indicators to characterize patterns of built structures. We quantify these indicators for 113 countries and statistically analyze the results along with final energy use and territorial CO2 emissions, as well as factors commonly included in national-level analyses of determinants of energy use and emissions. We find that these indicators are about equally important for predicting energy demand and CO2 emissions as GDP and other conventional factors. The area of built-up land per capita is the most important predictor, second only to the effect of GDP.

4.
Data Brief ; 47: 108997, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36909013

RESUMO

High-resolution maps of material stocks in buildings and infrastructures are of key importance for studies of societal resource use (social metabolism, circular economy, secondary resource potentials) as well as for transport studies and land system science. So far, such maps were only available for specific years but not in time series. Even for single years, data covering entire countries with high resolution, or using remote-sensing data are rare. Instead, they often have local extent (e.g., [1]), are lower resolution (e.g., [2]), or are based on other geospatial data (e.g., [3]). We here present data on the material stocks in three types of buildings (commercial and industrial, single- and multifamily houses) and three types of infrastructures (roads, railways, other infrastructures) for a 33-year time series for Austria at a spatial resolution of 30 m. The article also presents data on population and employment in Austria for the same time period, at the same spatial resolution. Data were derived with the same method applied in a recent study for Germany [4].

5.
MethodsX ; 9: 101654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402170

RESUMO

International datasets on economy-wide material flows currently fail to comprehensively cover the quantitatively most important materials and countries, to provide centennial coverage and to differentiate between processing stages. These data gaps hamper research and policy on resource use. Herein, we present and document the data processing and compilation procedures applied to develop a novel economy-wide database of primary stock-building material flows systematically covering 177 countries from 1900- 2016. The main methodological novelty is the consistent integration of material flow accounting and analysis principles and thereby addresses limitations in terms of transparency, data quality and uncertainty treatment. The database systematically discerns four processing stages from raw materials extraction, to processing of raw and semi-finished products, to manufacturing of stock-building materials. Included materials are concrete, asphalt, bricks, timber products, paper, iron & steel, aluminium, copper, lead, zinc, other metals, plastics, container and flat glass. The database is compiled using international and national data sources, using a transparent and consistent 10-step procedure, as well as a systematic uncertainty assessment. Apart from a detailed documentation of the data compilation, validations of the database using data from previous studies and additional uncertainty estimates are presented. • Systematically compiled historical database of primary stock-building material flows for 177 countries. • Consistent integration of economy-wide material flow accounting and detailed material flow analysis principles. • Methodological enhancements in terms of transparency, data quality and uncertainty treatment.

6.
Sustain Sci ; 16(5): 1405-1421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721700

RESUMO

Energy, food, or mobility can be conceptualized as provisioning systems which are decisive to sustainability transformations in how they shape resource use and because of emissions resulting from them. To curb environmental pressures and improve societal well-being, fundamental changes to existing provisioning systems are necessary. In this article, we propose that provisioning systems be conceptualized as featuring integrated socio-metabolic and political-economic dimensions. In socio-metabolic terms, material stocks-buildings, infrastructures, and machines, for example-are key components of provisioning systems and transform flows of energy and materials into goods and services. In political-economic terms, provisioning systems are formed by actors, institutions, and capital. We loosely identify and closely analyze, from socio-metabolic and political-economic perspectives, five phases along which provisioning systems are shaped and in which specific opportunities for interventions exist. Relying mainly on examples from the fossil-fueled electricity system, we argue that an integrated conceptualization of provisioning systems can advance understanding of these systems in two essential ways: by (1) facilitating a more encompassing perspective on current forms of provisioning as relying on capitalist regulation and on material stocks and flows and by (2) embedding provisioning systems within their historical context, making it possible to conceive of more sustainable and just forms of provisioning under (radically) altered conditions.

7.
Environ Sci Technol ; 55(5): 3368-3379, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600720

RESUMO

The dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Two main types of data are currently used to map stocks, night-time lights (NTL) from Earth-observing (EO) satellites and cadastral information. We present an alternative approach for broad-scale material stock mapping based on freely available high-resolution EO imagery and OpenStreetMap data. Maps of built-up surface area, building height, and building types were derived from optical Sentinel-2 and radar Sentinel-1 satellite data to map patterns of material stocks for Austria and Germany. Using material intensity factors, we calculated the mass of different types of buildings and infrastructures, distinguishing eight types of materials, at 10 m spatial resolution. The total mass of buildings and infrastructures in 2018 amounted to ∼5 Gt in Austria and ∼38 Gt in Germany (AT: ∼540 t/cap, DE: ∼450 t/cap). Cross-checks with independent data sources at various scales suggested that the method may yield more complete results than other data sources but could not rule out possible overestimations. The method yields thematic differentiations not possible with NTL, avoids the use of costly cadastral data, and is suitable for mapping larger areas and tracing trends over time.


Assuntos
Áustria , Alemanha
8.
J Ind Ecol ; 24(3): 548-563, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32612346

RESUMO

Input-output analysis is one of the central methodological pillars of industrial ecology. However, the literature that discusses different structures of environmental extensions (EEs), that is, the scope of physical flows and their attribution to sectors in the monetary input-output table (MIOT), remains fragmented. This article investigates the conceptual and empirical implications of applying two different but frequently used designs of EEs, using the case of energy accounting, where one represents energy supply while the other energy use in the economy. We derive both extensions from an official energy supply-use dataset and apply them to the same single-region input-output (SRIO) model of Austria, thereby isolating the effect that stems from the decision for the extension design. We also crosscheck the SRIO results with energy footprints from the global multi-regional input-output (GMRIO) dataset EXIOBASE. Our results show that the ranking of footprints of final demand categories (e.g., household and export) is sensitive to the extension design and that product-level results can vary by several orders of magnitude. The GMRIO-based comparison further reveals that for a few countries the supply-extension result can be twice the size of the use-extension footprint (e.g., Australia and Norway). We propose a graph approach to provide a generalized framework to disclosing the design of EEs. We discuss the conceptual differences between the two extension designs by applying analogies to hybrid life-cycle assessment and conclude that our findings are relevant for monitoring of energy efficiency and emission reduction targets and corporate footprint accounting.

9.
Ecol Econ ; 164: 106357, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31582877

RESUMO

Mitigating climate change to achieve the goal of staying below 2 °C of warming requires urgent reductions of emissions. Demand-side measures mostly focus on the footprints of consumption. Analysing time use can add to understand the carbon implications of everyday life and the potentials and limitations for decarbonising consumption better. We investigate the carbon footprints of everyday activities in Austria. We linked data from the Austrian Time-use Survey and the Austrian Household Budget Survey with the Eora-MRIO for 2009-2010 in order to estimate the household carbon footprints of all time-use activities. We introduce a functional time-use perspective differentiating personal, committed, contracted and free time to investigate the average carbon intensity of activities per hour, for an average day and for the average woman and man. We find that personal time is relatively low-carbon, while household as well as leisure activities show large variation in terms of CO2e footprint/h. The traditional gendered division of labour shapes the time-use patterns of women and men, with implications for their carbon footprints. Further research analysing differences in household size, income, location and availability of infrastructure in their relation to time use is crucial to be able to assess possible pathways towards low carbon everyday life.

10.
Environ Sci Technol ; 53(15): 8499-8515, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31246441

RESUMO

Built environment stocks (buildings and infrastructures) play multiple roles in our socio-economic metabolism: they serve as the backbone of modern societies and human well-being, drive the material cycles throughout the economy, entail temporal and spatial lock-ins on energy use and emissions, and represent an extensive reservoir of secondary materials. This review aims at providing a comprehensive and critical review of the state of the art, progress, and prospects of built environment stocks research which has boomed in the past decades. We included 249 publications published from 1985 to 2018, conducted a bibliometric analysis, and assessed the studies by key characteristics including typology of stocks (status of stock and end-use category), type of measurement (object and unit), spatial boundary and level of resolution, and temporal scope. We also highlighted the strengths and weaknesses of different estimation approaches. A comparability analysis of existing studies shows a clearly higher level of stocks per capita and per area in developed countries and cities, confirming the role of urbanization and industrialization in built environment stock growth. However, more spatially refined case studies (e.g., on developing cities and nonresidential buildings) and standardization and improvement of methodology (e.g., with geographic information system and architectural knowledge) and data (e.g., on material intensity and lifetime) would be urgently needed to reveal more robust conclusions on the patterns, drivers, and implications of built environment stocks. Such advanced knowledge on built environment stocks could foster societal and policy agendas such as urban sustainability, circular economy, climate change, and United Nations 2030 Sustainable Development Goals.


Assuntos
Ambiente Construído , Urbanização , Cidades , Humanos , Desenvolvimento Industrial , Crescimento Sustentável
11.
J Ind Ecol ; 23(1): 62-76, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31007502

RESUMO

The concept of a circular economy (CE) is gaining increasing attention from policy makers, industry, and academia. There is a rapidly evolving debate on definitions, limitations, the contribution to a wider sustainability agenda, and a need for indicators to assess the effectiveness of circular economy measures at larger scales. Herein, we present a framework for a comprehensive and economy-wide biophysical assessment of a CE, utilizing and systematically linking official statistics on resource extraction and use and waste flows in a mass-balanced approach. This framework builds on the widely applied framework of economy-wide material flow accounting and expands it by integrating waste flows, recycling, and downcycled materials. We propose a comprehensive set of indicators that measure the scale and circularity of total material and waste flows and their socioeconomic and ecological loop closing. We applied this framework in the context of monitoring efforts for a CE in the European Union (EU28) for the year 2014. We found that 7.4 gigatons (Gt) of materials were processed in the EU and only 0.71 Gt of them were secondary materials. The derived input socioeconomic cycling rate of materials was therefore 9.6%. Further, of the 4.8 Gt of interim output flows, 14.8% were recycled or downcycled. Based on these findings and our first efforts in assessing sensitivity of the framework, a number of improvements are deemed necessary: improved reporting of wastes, explicit modeling of societal in-use stocks, introduction of criteria for ecological cycling, and disaggregated mass-based indicators to evaluate environmental impacts of different materials and circularity initiatives.

12.
Environ Sci Technol ; 52(7): 4190-4198, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514002

RESUMO

Globalization led to an immense increase of international trade and the emergence of complex global value chains. At the same time, global resource use and pressures on the environment are increasing steadily. With these two processes in parallel, the question arises whether trade contributes positively to resource efficiency, or to the contrary is further driving resource use? In this article, the socioeconomic driving forces of increasing global raw material consumption (RMC) are investigated to assess the role of changing trade relations, extended supply chains and increasing consumption. We apply a structural decomposition analysis of changes in RMC from 1990 to 2010, utilizing the Eora multi-regional input-output (MRIO) model. We find that changes in international trade patterns significantly contributed to an increase of global RMC. Wealthy developed countries play a major role in driving global RMC growth through changes in their trade structures, as they shifted production processes increasingly to less material-efficient input suppliers. Even the dramatic increase in material consumption in the emerging economies has not diminished the role of industrialized countries as drivers of global RMC growth.


Assuntos
Comércio , Internacionalidade
13.
Glob Environ Change ; 52: 131-140, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30679887

RESUMO

The size and structure of the socioeconomic metabolism are key for the planet's sustainability. In this article, we provide a consistent assessment of the development of material flows through the global economy in the period 1900-2015 using material flow accounting in combination with results from dynamic stock-flow modelling. Based on this approach, we can trace materials from extraction to their use, their accumulation in in-use stocks and finally to outflows of wastes and emissions and provide a comprehensive picture of the evolution of societies metabolism during global industrialization. This enables outlooks on inflows and outflows, which environmental policy makers require for pursuing strategies towards a more sustainable resource use. Over the whole time period, we observe a growth in global material extraction by a factor of 12 to 89 Gt/yr. A shift from materials for dissipative use to stock building materials resulted in a massive increase of in-use stocks of materials to 961 Gt in 2015. Since materials increasingly accumulate in stocks, outflows of wastes are growing at a slower pace than inputs. In 2015, outflows amounted to 58 Gt/yr, of which 35% were solid wastes and 25% emissions, the reminder being excrements, dissipative use and water vapor. Our results indicate a significant acceleration of global material flows since the beginning of the 21st century. We show that this acceleration, which took off in 2002, was not a short-term phenomenon but continues since more than a decade. Between 2002 and 2015, global material extraction increased by 53% in spite of the 2008 economic crisis. Based on detailed data on material stocks and flows and information on their long-term historic development, we make a rough estimate of what a global convergence of metabolic patterns at the current level in industrialized countries paired with a continuation of past efficiency gains might imply for global material demand. We find that in such a scenario until 2050 average global metabolic rates double to 22 t/cap/yr and material extraction increases to around 218 Gt/yr. Overall the analysis indicates a grand challenge calling for urgent action, fostering a continuous and considerable reduction of material flows to acceptable levels.

14.
Proc Natl Acad Sci U S A ; 114(8): 1880-1885, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167761

RESUMO

Human-made material stocks accumulating in buildings, infrastructure, and machinery play a crucial but underappreciated role in shaping the use of material and energy resources. Building, maintaining, and in particular operating in-use stocks of materials require raw materials and energy. Material stocks create long-term path-dependencies because of their longevity. Fostering a transition toward environmentally sustainable patterns of resource use requires a more complete understanding of stock-flow relations. Here we show that about half of all materials extracted globally by humans each year are used to build up or renew in-use stocks of materials. Based on a dynamic stock-flow model, we analyze stocks, inflows, and outflows of all materials and their relation to economic growth, energy use, and CO2 emissions from 1900 to 2010. Over this period, global material stocks increased 23-fold, reaching 792 Pg (±5%) in 2010. Despite efforts to improve recycling rates, continuous stock growth precludes closing material loops; recycling still only contributes 12% of inflows to stocks. Stocks are likely to continue to grow, driven by large infrastructure and building requirements in emerging economies. A convergence of material stocks at the level of industrial countries would lead to a fourfold increase in global stocks, and CO2 emissions exceeding climate change goals. Reducing expected future increases of material and energy demand and greenhouse gas emissions will require decoupling of services from the stocks and flows of materials through, for example, more intensive utilization of existing stocks, longer service lifetimes, and more efficient design.

15.
J Ind Ecol ; 19(4): 538-551, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27524878

RESUMO

Material stocks are an important part of the social metabolism. Owing to long service lifetimes of stocks, they not only shape resource flows during construction, but also during use, maintenance, and at the end of their useful lifetime. This makes them an important topic for sustainable development. In this work, a model of stocks and flows for nonmetallic minerals in residential buildings, roads, and railways in the EU25, from 2004 to 2009 is presented. The changing material composition of the stock is modeled using a typology of 72 residential buildings, four road and two railway types, throughout the EU25. This allows for estimating the amounts of materials in in-use stocks of residential buildings and transportation networks, as well as input and output flows. We compare the magnitude of material demands for expansion versus those for maintenance of existing stock. Then, recycling potentials are quantitatively explored by comparing the magnitude of estimated input, waste, and recycling flows from 2004 to 2009 and in a business-as-usual scenario for 2020. Thereby, we assess the potential impacts of the European Waste Framework Directive, which strives for a significant increase in recycling. We find that in the EU25, consisting of highly industrialized countries, a large share of material inputs are directed at maintaining existing stocks. Proper management of existing transportation networks and residential buildings is therefore crucial for the future size of flows of nonmetallic minerals.

16.
J Ind Ecol ; 19(5): 703-714, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27547028

RESUMO

Land use is recognized as a pervasive driver of environmental impacts, including climate change and biodiversity loss. Global trade leads to "telecoupling" between the land use of production and the consumption of biomass-based goods and services. Telecoupling is captured by accounts of the upstream land requirements associated with traded products, also commonly referred to as land footprints. These accounts face challenges in two main areas: (1) the allocation of land to products traded and consumed and (2) the metrics to account for differences in land quality and land-use intensity. For two main families of accounting approaches (biophysical, factor-based and environmentally extended input-output analysis), this review discusses conceptual differences and compares results for land footprints. Biophysical approaches are able to capture a large number of products and different land uses, but suffer from a truncation problem. Economic approaches solve the truncation problem, but are hampered by the limited disaggregation of sectors and products. In light of the conceptual differences, the overall similarity of results generated by both types of approaches is remarkable. Diametrically opposed results for some of the world's largest producers and consumers of biomass-based products, however, make interpretation difficult. This review aims to provide clarity on some of the underlying conceptual issues of accounting for land footprints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...